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Bastian Goldlücke1,2[0000−0003−3427−4029]

1 Department of Computer and Information Science, University of Konstanz,
Germany

2 Centre for the Advanced Study of Collective Behaviour, University of Konstanz,
Germany

Corresponding author: urs.waldmann@uni-konstanz.de

Abstract. In the supplemental material, we first provide additional in-
formation including implementation details on our applications and case
studies that we briefly introduced in Sec. 4 in our main paper. Then
we report additional ablation studies and provide results. Next we re-
port qualitative results for our method of joint tracking and keypoint
propagation on our pigeons and JHMDB-test. We also report qualita-
tive results for one-shot VOS on DAVIS2017val. Also, we report more
quantitative results, i.e. for multi-object one-shot VOS on DAVIS2017val
and SegTrackV2. Finally, we give details on our synthetic pigeon dataset
and a rough expected inference speed for our applications and case stud-
ies. Please also check out our videos on https://urs-waldmann.github.io/
improving-unsupervised-label-propagation/ for further insights into our
pigeon keypoint tracking.
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1 Additional Information on Applications and Case
Studies

In this section of the supplemental material, we provide definitions together
with implementation details of the encoders and decoders for the applications
and case studies introduced briefly in Sec. 4 in our main paper.

1.1 Pose Tracking

Encoding keypoints requires some effort to transform the n points Ki,j ∈ R2, j =
1, . . . , n for the ith frame into 2D functions. Commonly [13,6,12,21], each key-
point is encoded to a separate layer in the label function, thus l = n. The label en-
coding for the jth keypoint is then a 2D Gaussian with meanKi,j⊙[w/W, h/H]T ,
where ⊙ denotes point-wise multiplication. Its standard deviation σ is a hyper-
parameter and should be chosen according to the feature size. Here, we found
we can improve upon some existing implementations. As the label function has
the resolution of the feature map, it is often only 1

4 or even 1
8 of the frame reso-

lution. Therefore, some inaccuracies in the placement of the Gaussian function
can occur if µ is not computed with sub-pixel precision. For example, UVC [13]
scales the features to the feature size but then casts the floating point numbers
to integers, thus discarding the sub-pixel precision. In contrast, we implement
our encoding function in such a way that the peak of the Gaussian does not
necessarily lie on an integral pixel position.

Decoding label functions to keypoints requires the approximate peak location
for each label function. The intuitive solution of using the location of the max-
imum is unreliable, as the quality of the result hinges on a single point. Hence,
some methods compute the mean or center of gravity of the top k positions to
improve the robustness of the solution to outliers. Our method follows the latter
approach of using the center of gravity not only for its improved robustness, but
also because the results have sub-pixel precision. The keypoints are scaled up
according to the frame size to feature size scale factor after decoding, therefore
we need a sub-pixel precision at the feature level to achieve pixel-level accuracy
at the frame scale. It is important to estimate the center of gravity from a small
set of locations, because the majority of values in the label function are close
to zero. Therefore, they only have very limited benefit to the localization of the
peak but introduce relatively large errors compared to their contribution.

Implementation Details. For pose tracking of humans on JHMDB [7], we
use the ResNet18 [4] feature extractor trained with UVC [13]. The training data
is the same as in the original paper, i.e. MSCOCO [14] for the autoencoder and
Kinetics [8] for the feature network. Feature vector normalization with the L2

norm is applied to all feature maps. To improve the keypoint accuracy, we scale
the 240 × 320 pixel source images of JHMDB up to 480 × 640 pixels. Each
keypoint is encoded with a subpixel-accurate Gaussian function with σ = 0.5.
Label decoding uses center of mass computed from the top 5 locations. Label
propagation uses the 20 immediately preceding frames and the first frame as
context frames. The affinity matrices are normalized with softmax per column
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and restricted to a square neighborhood with a side length of 25. The label
propagation uses the top 20 reference locations over all reference frames at once.

1.2 Joint Tracking and Label Propagation

Tracking objects which occupy only a small part of the video frames, such as in
our particular use case of video material of pigeons, poses two difficulties:

1. The affinity size becomes very large if the frame is processed at a high
resolution.

2. The precision loss caused by processing at feature scale impedes the perfor-
mance significantly, even if sub-pixel accuracy is considered during tracking.

We solve both of these problems simultaneously by tracking the objects with a
fast single-object tracker. We choose UDT [19] for the tracking as it is trained in
an unsupervised manner, has good performance and is very fast. The tracking
allows us to crop a rectangle around the object of interest and resize it to a
fixed size. The keypoint locations are transformed with the offset and scale of
the resized cropping rectangle, such that we can perform label propagation only
on the cropped region, see Fig. 1 in our main paper. This setup allows us to
track the keypoints at a much higher resolution and simultaneously reduce the
overhead of processing the remainder of the frame.

Implementation Details. We use UDT [19] as our object tracker. The
feature network is trained on ImageNetVID [18]. We use scale estimation at
three scales, an update factor of 0.01, regularization λ = 0.1 and a patch size of
125×125. For the remaining details on the tracker implementation, please refer to
the original work [19]. We initialize the tracker with the bounding box containing
all of the initial keypoints. We define the cropping region based on the tracked
rectangle of size h × w. The center of this rectangle defines the center of the
cropping region. The cropping region is a square with side length 2 ·max(h,w).
If parts of this cropping region are outside of the image, we move the region to fit
entirely within the image. This ensures, that the cropped image is not stretched
or contains black regions. After the image is cropped, it is resized to 480× 480
pixels with bicubic interpolation. Size is chosen to ensure that the object is large
enough to achieve good accuracy while keeping the memory requirements for the
label propagation under control.

1.3 Unsupervised Zero-Shot VOS

Mask Encoding and Decoding. We chose the number of label functions as
l = n + 1 and encode each mask M j

i as a separate layer by scaling it down to
match the feature resolution of (h,w). The additional layer is the background
layer. It is set to 1 at all locations where no other mask is placed. Decoding
the masks is implemented as argmaxl, thus each pixel is occupied by the mask
with the strongest response or the background. This is followed by bilinear mask
upscaling up to resolution (H,W ).
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Unsupervised Mask Initialization: Pixel Location Selection per At-
tention Head. Pixels are selected to sum to a fixed percentage of the total
mass. The selection is done in order of decreasing attention and results in a
binary mask for each of the remaining attention heads. These binary masks are
aggregated with a pixel-wise maximum to obtain a combined mask that should
already be close to the object of interest. Since the mass-based selection does
not take into account which pixels are contiguous we end up with some noise in
the preliminary mask, which we reduce with a median filter.

Unsupervised Mask Initialization: CRF-based Mask Refinement.
The mask prediction is slightly smoothed with a Gaussian function and normal-
ized, such that the maximum values are slightly below 1.0. This prepared soft
mask is then used as a prior for a CRF [10] to return a better fit to the input
image. As a final step we apply another median filter to eliminate unwanted
stray pixels from the mask.

Implementation Details. We chose the mass percentage as 0.5, and the
quantile as 0.5. The median filter prior to mask refinement uses a kernel size
of 3×3. To compute the prior of the mask refinement, we apply a Gaussian blur
with σ = 1.0 to the preliminary mask and scale the values to fit in [0.2, 0.8]. Since
the initial mask is at feature scale, it is scaled up with bilinear interpolation
to match the input frame size. We perform 10 iterations of mask refinement.
The final median filter uses a kernel size of 5 × 5. Compared to the baseline
configuration for keypoint propagation we use only the first context frame for
Z-VOS inference.

2 Additional Ablation Studies and Results

In this section of the supplemental material, we report more ablation studies
and results (cf. Sec. 5.1 in our main paper).

2.1 Context Frames

In Fig. 1 we report qualitative results on the influence of the number of con-
text frames for one-shot VOS (for quantitative results cf. Tab. 3). In Fig. 2 we
show the influence of the number of context frames for our method of keypoint
propagation with and without tracking (cf. Tabs. 1 and 2).

2.2 Pose Tracking

In Tabs. 1 and 2 we report results on ablation studies of various configuration
elements for keypoint propagation without and with tracking respectively.

Our novel joint tracking and keypoint propagation pipeline (cf. Fig. 1 in our
main paper) is the one that we use for pose tracking in Sec. 5.2 in our main paper
since we achieve better results with that pipeline than with the core pipeline (cf.
dashed box in Fig. 1 in our main paper). You see that by comparing Tabs. 1
and 2. For completeness, we still report ablation results for the core pipeline
in Tab. 1.
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2.3 One-Shot VOS

In Tab. 3 we report ablation results for one-shot VOS on DAVIS2017val. This
is also the configuration that we use for unsupervised zero-shot VOS in Sec.
5.2 in our main paper. For the quantitative results in Tab. 4, we also report
results where we change the number of context frames from 7 to 20. This change
improves performance.

Input Frame 19 Frame 37 Frame 54 Frame 72 Frame 90

Input Frame 19 Frame 37 Frame 54 Frame 72 Frame 90

Input Frame 19 Frame 37 Frame 54 Frame 72 Frame 90

Fig. 1. Qualitative comparison on the influence of the number of context frames for
O-VOS. Mask predictions for the dance-twirl video from DAVIS2017 with different
numbers of context frames. From top to bottom the runs use 1, 7 and 20 context frames.
Differences are especially visible in the later frames, e.g. frame 72 and frame 90.
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Fig. 2. Influence of the number of context frames. The two lines show the core pipeline
configuration without tracking (cf. dashed box in Fig. 1 in our main paper) and the
extended pipeline which also performs object tracking (cf. Fig. 1 in our main pa-
per). The general observation is, that the PCK0.1 increases with higher numbers of
context frames, albeit with diminishing returns for large numbers of context frames.
For PCK0.2, the first few context frames bring noticeable performance improvements
whereas later frames mostly help for the core pipeline.
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Table 1. Ablation: Keypoint propagation without tracking on the JHMDB test set. The
table shows the performance impact of various configuration elements. The baseline
configuration is the core pipeline configuration for keypoint propagation without the
tracking component (cf. dashed box in Fig. 1 in our main paper). The number of context
frames is 7 in these experiments although we achieve better results with 20 context
frames (cf. Fig. 2). The rows marked in grey show the result of the baseline configuration
(repeated in each group for easier comparison). PCK is shown at thresholds τ = 0.1
and τ = 0.2. ∆τ denotes the absolute difference to the baseline. mp: main paper, sm:
supplemental material.

PCK0.1 ∆0.1 PCK0.2 ∆0.2

Baseline 63.6 − 82.8 −
No Feature Normalization, mp Sec. 3.1 56.5 -7.1 78.5 -4.3
Batched Label Propagation, mp Sec. 3.2 61.8 -1.8 80.7 -2.1
No Subpixel-Accurate Labels, sm Sec. 1.1 63.0 -0.6 82.6 -0.3
Image Scale 320, mp Sec. 4.1 60.1 -3.4 79.7 -3.1

Affinity Top-K, mp Sec. 3.2
1 (ArgMax) 55.9 -7.7 77.7 -5.1
5 62.1 -1.5 81.7 -1.1
10 63.2 -0.4 82.5 -0.3
13 63.3 -0.2 82.7 -0.2
15 63.4 -0.2 82.7 -0.1
17 63.5 -0.1 82.8 -0.0
20 63.6 − 82.8 −
23 63.5 -0.1 82.7 -0.1
25 63.5 -0.1 82.7 -0.2

Affinity Normalization, mp Sec. 3.2
none 62.8 -0.7 82.4 -0.4
Softmax 40.3 -23.3 51.4 -31.4
UVC 62.8 -0.7 82.4 -0.4
UVC+Softmax 63.6 − 82.8 −

Local Affinity, Sec. mp 3.2
3 62.4 -1.1 81.7 -1.1
5 63.3 -0.3 82.6 -0.2
12 63.6 − 82.8 −
Unrestricted 63.5 -0.1 82.6 -0.3

Label Standard Deviation, sm Sec. 1.1
0.25 63.2 -0.3 82.7 -0.1
0.5 63.6 − 82.8 −
1.0 62.4 -1.2 80.2 -2.6
2.0 60.1 -3.4 77.5 -5.3
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Table 2. Ablation: Keypoint propagation with tracking on the JHMDB test set. The
table shows the performance impact of various configuration elements. The baseline
configuration is our novel joint tracking and propagation configuration for keypoint
propagation (cf. Fig. 1 in our main paper). The rows marked in grey show the result
of the baseline configuration (repeated in each group for easier comparison). PCK is
shown at thresholds τ = 0.1 and τ = 0.2. ∆τ denotes the absolute difference to the
baseline. mp: main paper, sm: supplemental material.

PCK0.1 ∆0.1 PCK0.2 ∆0.2

Baseline 65.8 − 84.2 −
No Feature Normalization, mp Sec. 3.1 64.0 -1.8 82.5 -1.7
Batched Label Propagation, mp Sec. 3.2 61.6 -4.2 80.5 -3.7
No Subpixel-Accurate Labels, sm Sec. 1.1 65.5 -0.3 84.0 -0.2
Image Scale 320, mp Sec. 4.1 63.2 -2.6 82.1 -2.1
No Tracking, mp Sec. 4.1 63.9 -1.9 82.8 -1.4

Affinity Top-K, mp Sec. 3.2
1 (ArgMax) 59.8 -6.0 80.8 -3.4
5 65.0 -0.8 83.8 -0.4
10 65.7 -0.0 84.3 0.1
13 65.7 -0.1 84.4 0.2
15 65.8 0.0 84.3 0.1
17 65.7 -0.1 84.4 0.2
20 65.8 − 84.2 −
23 65.7 -0.1 84.2 0.0
25 65.7 -0.1 84.0 -0.2

Affinity Normalization, mp Sec. 3.2
none 65.3 -0.5 83.9 -0.3
Softmax 65.2 -0.6 83.8 -0.4
UVC 65.3 -0.5 83.9 -0.3
UVC+Softmax 65.8 − 84.2 −

Local Affinity, mp Sec. 3.2
3 65.2 -0.6 83.5 -0.7
5 65.7 -0.1 84.0 -0.2
12 65.8 − 84.2 −
Unrestricted 65.6 -0.2 83.9 -0.3

Context Frames, mp Sec. 3.2
1 63.5 -2.2 81.9 -2.3
3 65.3 -0.5 84.1 -0.1
5 65.5 -0.3 84.2 0.0
7 65.5 -0.3 84.1 -0.1
10 65.6 -0.2 84.1 -0.1
15 65.7 -0.1 84.1 -0.1
20 65.8 − 84.2 −

Label Standard Deviation, sm Sec. 1.1
0.25 65.7 -0.1 84.1 -0.0
0.5 65.8 − 84.2 −
1.0 65.0 -0.8 82.4 -1.8
2.0 64.0 -1.7 80.8 -3.3
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Table 3. Ablation: O-VOS on DAVIS2017val. The table shows the performance im-
pact of various configuration elements. The rows marked in grey show the result of the
baseline configuration (repeated in each group for easier comparison). This configura-
tion is similar to the one used by DINO [2], with the only difference being the improved
mask encoding. mp: main paper, sm: supplemental material.

J&Fm Jm Jr Jd Fm Fr Fd

Baseline 71.79 68.40 81.42 15.23 75.18 86.89 18.69
No Feature Norm, mp Sec. 3.1 1.28 1.28 1.28 −2.22 1.28 1.28 −2.22
Batched Label Prop., mp Sec. 3.2 64.69 61.43 70.62 23.59 67.95 77.98 26.44
No Decoding Norm, sm Sec. 1.3 71.18 68.08 80.84 15.87 74.29 86.10 18.39

Affinity Top-K, mp Sec. 3.2
3 71.69 68.33 81.56 15.57 75.05 86.88 19.66
5 71.79 68.40 81.42 15.23 75.18 86.89 18.69
10 71.61 68.25 80.88 14.46 74.98 85.56 17.37
15 71.04 67.66 79.77 14.45 74.42 84.67 16.91
20 70.38 67.06 79.27 14.54 73.70 84.24 17.08
25 70.02 66.72 78.67 14.55 73.31 84.21 16.86

Affinity Norm, mp Sec. 3.2
Softmax 14.05 8.42 2.37 14.04 19.68 8.74 29.48
DINO and Softmax 63.09 59.81 70.99 23.78 66.38 78.33 28.30
None 71.68 68.29 81.28 14.72 75.07 86.80 17.81
DINO 71.79 68.40 81.42 15.23 75.18 86.89 18.69

Local Affinity, mp Sec 3.2
3 66.73 63.64 75.07 22.56 69.81 81.59 26.19
5 69.87 66.40 78.36 19.92 73.35 85.53 22.20
7 71.40 68.04 80.61 15.99 74.76 87.10 19.54
12 71.79 68.40 81.42 15.23 75.18 86.89 18.69
Unrestricted 71.52 68.09 81.19 14.95 74.94 86.67 18.20

Context Frames, mp Sec. 3.2
1 70.08 66.51 78.95 17.33 73.64 84.23 19.50
3 71.08 67.61 79.69 16.01 74.56 85.92 19.01
5 71.42 68.04 80.62 15.57 74.79 86.33 18.90
7 71.79 68.40 81.42 15.23 75.18 86.89 18.69
10 72.03 68.67 81.84 15.05 75.38 86.91 18.66
15 72.23 68.87 82.05 14.66 75.59 87.05 18.15
20 72.27 68.89 82.13 14.89 75.64 86.98 18.08

Label Codec Interpol., sm Sec. 1.3
Nearest-neighbors 67.12 62.54 78.25 12.66 71.70 84.68 18.96
Bicubic 71.55 67.95 80.64 15.30 75.16 87.95 18.60
Bilinear 71.79 68.40 81.42 15.23 75.18 86.89 18.69
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3 Additional Qualitative Results

In this section of the supplemental material, we report additional qualitative
results on label propagation.

In Fig. 3 we report qualitative results on our novel joint tracking and key-
point propagation method for real-world and synthetic pigeons (for quantitative
results cf. Fig. 4 in our main paper). Please also check out our videos for further
insights into this part. Videos can be found at https://urs-waldmann.github.
io/improving-unsupervised-label-propagation/. In Fig. 4 we report qualitative
results for joint tracking and keypoint propagation on JHMDB-test (for quan-
titative results cf. Tab. 3 in our main paper). In Fig. 5 we report qualitative
results for O-VOS on DAVIS2017val (for quantitative results cf. Tab. 4).

Input Frame 66 Frame 131 Frame 196 Frame 261 Frame 326

Real-world sequence

Input Frame 191 Frame 380 Frame 570 Frame 759 Frame 949

Synthetic sequence

Fig. 3. Qualitative results of our novel joint tracking and keypoint propagation method.
The first frame annotation is shown as the initial frame for each row with the corre-
sponding ground-truth annotations. The following frames are sampled with even spac-
ing from the remaining video. The second and fourth row show full frames of the
real-world and synthetic sequences respectively. The first and third row show enlarged
crops from these full frames to improve the visibility of the keypoints. The green box
in the full frames indicates the cropping location. The red lines of the skeleton are the
left side, blue lines the right side and magenta the connection to the beak.

https://urs-waldmann.github.io/improving-unsupervised-label-propagation/
https://urs-waldmann.github.io/improving-unsupervised-label-propagation/
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Input Frame 9 Frame 17 Frame 24 Frame 32 Frame 40

Input Frame 7 Frame 13 Frame 18 Frame 24 Frame 30

Input Frame 9 Frame 17 Frame 24 Frame 32 Frame 40

Input Frame 9 Frame 17 Frame 24 Frame 32 Frame 40

Input Frame 9 Frame 17 Frame 24 Frame 32 Frame 40

Input Frame 9 Frame 17 Frame 24 Frame 32 Frame 40

Input Frame 9 Frame 17 Frame 24 Frame 32 Frame 40

Fig. 4. Qualitative results on JHMDB-test. The index number and category of the
shown videos are 35 (pullup), 186 (shoot bow), 199 (climb stairs), 205 (clapping), 47
(stand), 73 (jump) and 218 (brush hair), listed from top to bottom. The first four
rows show videos where the pose tracking works as intended. The latter three rows are
various error cases.



12 U. Waldmann et al.

Input Frame 11 Frame 21 Frame 30 Frame 40 Frame 50

Input Frame 17 Frame 33 Frame 48 Frame 64 Frame 80

Input Frame 16 Frame 32 Frame 47 Frame 63 Frame 78

Input Frame 17 Frame 32 Frame 48 Frame 63 Frame 79

Input Frame 19 Frame 37 Frame 54 Frame 72 Frame 90

Input Frame 10 Frame 19 Frame 29 Frame 38 Frame 47

Fig. 5. Qualitative results on DAVIS2017val with one-shot inference. The shown se-
quences are blackswan, bmx-trees, gold-fish, pigs, camel and lab-coat, listed from top
to bottom. The first frame shows the ground-truth mask used for initialization. The
following frames were sampled over the entire video length maintaining even spacing
in between.
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4 Additional Quantitative Results

In his section of the supplemental material, we report more quantitative results
on label propagation.

On the left side of Tab. 4 we report O-VOS results on DAVIS2017val (for
qualitative results cf. Fig. 5). On the right side of Tab. 4 instead we show quan-
titative results on SegTrackV2 for O-VOS (quantitative results for Z-VOS are
shown in Tab. 5 in our main paper).

Table 4. Multi-object O-VOS results on DAVIS2017val (left) and SegTrackV2 (right).
On DAVIS2017 we outperform or match the performance of other self-supervised meth-
ods. It improves on DINO without using a significantly different amount of compute
resources, simply by ensuring accurate label encoding and decoding. When we increase
the number of context frames from 7 to 20 we can improve the results even further
(cf. Tab. 3). On SegTrackV2 we can match the performance of popular supervised and
semi-supervised methods that were state of the art only a few years prior.

Method J&Fm Jm Jr Fm Fr

MuG [15] 54.4 52.6 57.4 56.1 58.1
UVC [13] 58.2 56.8 65.7 59.5 65.1
UVC-track [13] 58.9 57.7 67.1 60.0 65.7
VINCE [3] 60.4 57.9 66.2 62.8 71.5
MAST [11] 65.5 63.3 73.2 67.6 77.7
STC [6] 67.6 64.8 76.1 70.2 82.1
STC-adapt [6] 68.3 65.5 78.6 71.0 82.9
DINO (ViT-B/8) [2] 71.4 67.9 80.7 74.8 87.8
Ours 71.8 68.4 81.4 75.2 86.9
Ours + context=20 72.3 68.9 82.1 75.6 87.0

Method Jm

BVS [16] 58.4
OSVOS [1] 65.4
MaskTrack [17] 70.3
RGMP [22] 71.1
MaskRNN [5] 72.1
LucidTracker [9] 77.6
Ours 78.0
Ours + context=20 78.1

STV† [20] 78.1

5 Details on the Synthetic Pigeon Dataset

The synthetic sequence is rendered with Blender and the Cycles engine. The 3D
model is made of 40k polygons and textured using 4K images. Multiple actions
like walking, eating, cleaning, and looking around are combined.

6 Rough Expected Inference Speed

Our inference speed on VOS has only negligible differences to DINO [2]. For
keypoint propagation the inference speed of our method is similar to STC [6]
because the same number of context frames is used and the remaining pipeline
is very similar. The object tracking is beneficial to the inference speed because
it allows to reduce the scale size. Tracking and scaling to 320 yields very similar
result quality to keypoint propagation without tracking at 480 (cf. Tabs. 1 and 2)
but is roughly three times as fast.
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