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Abstract. Label propagation is a challenging task in computer vision
with many applications. One approach is to learn representations of vi-
sual correspondence. In this paper, we study recent works on label prop-
agation based on correspondence, carefully evaluate the effect of various
aspects of their implementation, and improve upon various details. Our
pipeline assembled from these best practices outperforms the previous
state of the art in terms of PCK0.1 on the JHMDB dataset by 6.5%. We
also propose a novel joint framework for tracking and keypoint propa-
gation, which in contrast to the core pipeline is applicable to tracking
small objects and obtains results that substantially exceed the perfor-
mance of the core pipeline. Finally, for VOS, we extend the core pipeline
to a fully unsupervised one by initializing the first frame with the self-
attention layer from DINO. Our pipeline for VOS runs online and can
handle static objects. It outperforms unsupervised frameworks with these
characteristics.
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1 Introduction

Learning representations of visual and temporal correspondence is a fundamental
task in computer vision. It has many applications ranging from depth estima-
tion [16] and optical flow [2,4,12] to segmentation and tracking [38,40,50]. Many
methods have been developed that can be split into two main categories [26],
according to whether they learn correspondence on a pixel level [1,44,48,57,51]
or a coarser level, i.e. region or object-based [27,43,12,30]. Recent approaches
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Fig. 1. Overview of the joint tracking and label propagation pipeline, showing pigeon
keypoint tracking as an example. The core pipeline of our method uses deep neural
network features to compute affinity matrices between a target frame and one or mul-
tiple reference frames. Labels for the target frame are computed by propagating the
reference labels based on the combined affinity matrices. Finally, the predicted labels
are decoded to coordinate values. The proposed extended pipeline shown outside the
dashed box is necessary for tracking small objects. Here, an object tracker is used to
locate the object of interest in each frame. This allows us to crop a region around the
object and perform keypoint propagation at a much higher resolution, after which we
undo the coordinate transform of the cropping for the decoded keypoints.

show that the two tasks can be modeled together with a single transformation
operation [26,52].

The first networks learning representations for visual correspondence were
trained in a supervised manner [4,12,39,42,49,11,46] and have some limitations.
In particular, they do not generalize well to real-world scenes when trained on
synthetic data, or rely on human annotations. That is why subsequently methods
with less supervision have been preferred. Most of them are self-supervised or
weakly supervised [52,22,26,13,23,29], and also reason at various levels of visual
correspondence.

We focus on the notion of visual correspondence in tracking since it plays
a key role in many applications, ranging from autonomous driving [6] to biol-
ogy [15]. Categories of tracking differ in which kind of information is tracked
throughout the frames. In Visual Object Tracking (VOT) [21], the typical aim
is to track just the position or bounding box of an object throughout a video,
given the location in the first frame. In contrast, Video Object Segmentation
(VOS) [37] aims for a more fine-grained tracking, where we track segmenta-
tion masks on the pixel-level instead of bounding boxes. Somewhere in between,
there is pose keypoint propagation, which tracks keypoints or a skeleton of an
object. All of these tracking tasks can be subsumed within the framework of
label propagation [48], on which we focus in this work.

Many recent state-of-the-art approaches for unsupervised label propagation
employ similar methodology, in particular correspondence-based representation
learning [52,23,26,22,13,3]. During inference, they also tend to do something sim-
ilar at the core, and compute a pixel-to-pixel affinity (similarity score) between
adjacent frames, using this affinity function to propagate the label function. The
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computation of the affinity is predominantly based on top-k (cf. Sec. 3.2) and
context frames (long-term vs. short-term, cf. Sec. 3.2). Further key parameters
are feature, affinity and label normalization. Although using a similar method-
ology, the actual implementations of label propagation are quite different in the
details. At the same time, these details are often not discussed at great length
in the papers, as they can be found in the accompanying source code.

However, in experiments we find that these minor details in implementation
can indeed have a very big impact on the performance, and that there are fur-
ther improvements to be made which also contribute to a better accuracy. We
therefore believe that a study of the effects of the details, in conjunction with
a discussion on the best choice for particular implementations, can be a quite
useful contribution.

Contributions. First, we present a pipeline for label propagation based
on visual correspondence, which is built by carefully evaluating and selecting
best practices, and improving upon previous work in important implementa-
tion details. This way, we outperform state of the art pipelines in terms of
Percentage of Correct Keypoints (PCK0.1) on the JHMDB [14] dataset by at
least 6.5% in pose tracking. Second, we extend the pipeline to a joint tracking
and keypoint propagation framework. This allows us to perform pose tracking
for a novel data set for pigeons, which plays a role in our biological research
on collective behaviour, and where the objects to be tracked are small com-
pared to the frame size. With the proposed technique, we obtain excellent per-
formance in pose tracking, exceeding the performance for humans (JHMDB)
and substantially surpassing the core pipeline. Finally, for VOS, we present a
pipeline which is fully unsupervised, initializing the first frame with the self-
attention layer from DINO [3] that is trained without supervision. Here, if
we disregard non-interactive post-processing, we outperform other unsupervised
methods that do not rely on motion segmentation, which limits the method
to moving objects. Both dataset and our code are publicly available at https:
//urs-waldmann.github.io/improving-unsupervised-label-propagation/

2 Related Work

Unsupervised Label Propagation. Unsupervised label propagation has been
studied extensively in recent years, for example to overcome the need for anno-
tated training data. The key idea in Wang et al. [52] is to train with UDT-like [50]
cycles, i.e. tracking backward and forward along a cycle in time. The inconsis-
tency between start and end point serves as the loss function. The authors also
demand cycle-consistency of a static track by forcing the tracker to relocate the
next patch in each successive frame. To overcome momentary occlusions and ease
learning in case of sudden changes in object pose, they also implement skip-cycles
and learn from shorter cycles when the full cycle is too difficult. Lai and Xie [23]
extend a framework [48] where tracking emerges automatically by learning the
target colors for a gray-scale input frame. The authors add channel-wise dropout
and color jitter to the input. Li et al. [26] show that enforcing cycle-consistency

https://urs-waldmann.github.io/improving-unsupervised-label-propagation/
https://urs-waldmann.github.io/improving-unsupervised-label-propagation/
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is equivalent to regularizing the affinity to be orthogonal, i.e. they encourage ev-
ery pixel to fall into the same location after one cycle of forward and backward
tracking. Lai et al. [22] augment the architecture with a long- and short-term
memory component to remember older frames: a two-step attention mechanism
first coarsely searches for candidate windows and then computes the fine-grained
matching. This ROI-based affinity computation additionally saves memory and
computational overhead. Jabri et al. [13] use a Graph Neural Network [8,47] to
learn representations of visual and temporal correspondence. The authors de-
mand cycle-consistency for a walk on a space-time graph that is constructed
from a video, where nodes are image patches and edges are only between neigh-
bouring nodes. They include also edge dropout [41] and test-time adaptation. i.e.
the model can be improved for correspondence by fine-tuning the representation
at test time on new videos. In contrast to us, they need to manually initialize the
mask of the first frame. Caron et al. [3] follow the experimental protocol in [13],
but use different features. Our core pipeline is similar to UVC [26] but includes
some improvements from STC [13] and CycleTime [52]. Further, we include new
improvements to the keypoint label creation, add frame upscaling and object
tracking [50] to improve the keypoint accuracy.

Video Object Segmentation. Yang et al. in [53] introduce an architecture
where they exploit motion, using only optical flow as input, and train it without
any manual supervision. They use L2 loss between input and reconstructed flow,
pixel-wise entropy regularisation on inferred masks, multi-step flow I from mul-
tiple time steps as objects may be static for some frames, i.e. {It→t+n1

, It→t+n2
},

n1, n2 ∈ {−2,−1, 1, 2}, and a consistency loss. Yang et al. in [55] present an ad-
versarial contextual model to detect moving objects in images. Their approach
exploits classical region-based variational segmentation in addition to modern
deep learning-based self-supervision. The authors encourage temporal consis-
tency on the final masks and apply a CRF-based [20] post-processing on them.

In contrast to both works [53,55] we use an architecture based on correspon-
dence that does not require object motion and can handle also objects which
are static for longer time intervals. We are also able to propagate both masks
and keypoints, while they can only propagate masks. In addition, we initialize
the first frame with the self-attention layer from DINO [3] that is trained with-
out supervision, so we do not depend on human annotation at all. Furthermore,
in contrast to [55], our framework runs online, while they make use of offline
post-processing.

3 Label Propagation

3.1 General Task

Label propagation is the task of propagating a number l of one or more label
functions in a semantically plausible way trough a video. Given an initial set of
label functions L1 ∈ [0, 1]h×w×l and a video V = {Ii|i ∈ 1, . . . , N} with frames
Ii ∈ CH×W in color space C, the goal is to predict a new set of label functions
Li ∈ [0, 1]h×w×l, i ≥ 2 for each subsequent frame in the video. Note that label
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functions are typically given at a lower resolution than the input images to match
the feature extractor.

The common approach to this problem is based on training a feature extrac-
tor F : CH×W → Rh×w×d. It has to create location-aware features, i.e. there
needs to be a spatial pixel-to-feature correspondence. The feature extractor is
then used to compute pixel-wise frame-to-frame affinities which represent the se-
mantic similarity, the larger, the stronger the semantic similarity. Let Fi := F(Ii)
be the feature map for frame i and F̄i ∈ Rhw×d be the linearized feature rep-
resentation, where each row is a feature vector corresponding to one spatial
location in the feature map. Then the affinity between frames Ii and Ij is given

by Ai,j = F̄i F̄j
T ∈ Rhw×hw. Each entry in this affinity map corresponds to the

semantic similarity of a pixel in frame Ii and another pixel in frame Ij .
To propagate a label function Li−1 by one frame – i.e. predicting Li – the

affinity matrix Ai−1,i is computed. This allows us to compute the pixels of Li

from the correspondence p̂ with highest affinity,

Li = Li−1

(
c(p̂)

)
with p̂(x, y) = argmax

q∈{1,...hw}

{
Ai−1,i( q, c

−1(x, y) )
}
. (1)

Here, c : {1, . . . , hw} → {1, . . . , h} × {1, . . . , w} is a coordinate translation func-
tion that maps the linearized coordinates in F̄ to the corresponding spatial
coordinates in F .

Choice of Feature Extractor. The feature extraction is an integral build-
ing block of label propagation. In this work we are not concerned with different
strategies to build and train the feature extraction network, but look at the in-
ference pipeline used for label propagation, so no new networks were trained. We
use a ResNet18 [10] trained with the methodology of Li et al. [26] for pose track-
ing. Even though this method is no longer state of the art, we show that minor
improvements to the inference pipeline can make the method competitive again.
For our fully unsupervised segment propagation experiments, we rely on a vision
transformer [18] trained with DINO [3]. In line with [13,3,26], we found that L2

normalization of each feature vector is beneficial for the tracking performance
(cf. ’No Feature Normalization’ vs. ’Baseline’ in Tab. 1).

3.2 Common Extensions

The general approach to label propagation is conceptually sound, but has some
difficulties in the real world. Real-world data is noisy, the feature extractors
are not able to compute exact semantic similarities and the compute resources
are limited. Therefore, a myriad of extensions and modifications to the simple
label propagation are made, which are different across methods. In our work,
we analyze various implementations of current label propagation methods and
notice that they tend to implement the same functionality in slightly different
ways. We took this as an opportunity to look at the performance implications
of such differences. This allows us to combine the best choice for each subtask
to obtain higher-quality results than each method individually.
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Affinity Top-K and Normalization. In Eq. (1) we have used the lo-
cation of the maximum to select the propagated value. In theory, this is the
optimal choice, but the noisy nature of the implementation can lead to outliers
in the affinity matrix. To mitigate the impact of a single outlier, it is com-
mon [26,23,52,13,22] to select more than one similar location and aggregate
the corresponding label function values. The aggregation of values differs from
method to method. CycleTime [52] applies a softmax function to the affinity
matrix columns and then aggregates the top k values with a weighted sum. The
affinity scores act as the weights. In contrast, STC [13] selects the top k values
first and then applies the softmax function afterwards. Further, UVC [26] and
STC [13] have a temperature parameter in their softmax implementation that
helps to sharpen or soften the output distribution. Many methods [26,3] also
apply a network-specific transformation to the affinity values. Our implemen-
tation uses a top-k-based implementation with network-specific transformations
for UVC and DINO. We perform the normalization after applying top-k, using
softmax for UVC and a simple normalization for DINO. We found that these
combinations work best for the respective networks. Results of ablation exper-
iments concerning the number of reference locations k (top-k also compared
against a pure argmax approach) and the normalization are shown in Tab. 1.

Local Affinity. Another measure to prevent implausible solutions is the
use of local affinity [23,26,13]. An object in a video can only travel a limited
distance between frames. The actual number of pixels depends on parameters
like movement speed, camera motion and frame rate. Assumptions about the
maximum displacement of an object between frames allow us to consider only
a fixed-size neighborhood around each location for propagation. The benefits
of this approach are two-fold. For one, the restriction to plausible movements
in the image prevents some undesired solutions that would lead to discontinu-
ities in the predicted label functions. This restriction leads to better results (cf.
Tab. 1). Secondly, a consistent local neighborhood implementation brings poten-
tial for large performance improvements and memory reduction. Because only
a small area around each pixel is required, the affinity matrix does not have to
be computed entirely, and the memory requirement exhibits a linear instead of
a quadratic growth in the number of pixels.

Context Frames. Videos commonly contain frames of varying quality, thus
it proves beneficial to use more than one reference frame at once. In this work
we compared two approaches to using such context frames: First, we analyzed
the results of individual propagation from each context frame and subsequent
aggregation of the individual results. Secondly, we analyzed the joint propagation
from all context frames at once, cf. Fig. 1. The first approach is used by [23,52,26]
and simply averages the label function results of each context frame. The joint
propagation used by [13,3] treats the affinity matrices of each context frame as
one big matrix with columns containing positions in all context frames. The
propagation is then performed by selecting the top-k values from the columns of
this joint affinity matrix. This joint approach allows to skip bad frames altogether
and instead select more values from higher-quality frames. We found that the



Improving Unsupervised Label Propagation 7

second approach works substantially better (cf. ’Batched Label Propagation’ vs.
’Baseline’ in Tab. 1). The context frames we use are the first frame and a fixed
number of directly preceding frames (cf. Figs. 1 and 2 and Tabs. 2 and 3 in our
supplemental material). Using the first frame as context is advisable as the label
functions for this frame are given. Hence, they are correct all the time which
helps to avoid drift during longer tracking.

4 Applications and Case Studies

The generic way of formulating label propagation enables the propagation of
various kinds of information through a video with a single framework. Examples
include masks, keypoints and textures. Here, we take a look at mask and key-
point propagation. For each of these tasks, we have certain information in our
problem domain P, which we have to map to our label propagation framework.
Thus, we have to define an encoding function E : P → [0, 1]h×w×l and a de-
coder D : [0, 1]h×w×l → P. Definitions of our encoders and decoders with their
implementation details are in Sec. 1 of our supplemental material.

4.1 Pose Tracking

We implement our encoding and decoding functions for the pose tracking core
pipeline (cf. dashed box in Fig. 1) in such a way that the keypoints are computed
with sub-pixel precision (cf. Sec. 1.1 in our supplementary).

We also contribute a new finding related to the sub-pixel precision require-
ment of keypoint encoding and decoding. Somewhat surprisingly, we found that
upsampling of the input frames before processing is actually of substantial bene-
fit. Although this does not add any additional information, the increase in spatial
resolution of the feature map reduces the precision loss during encoding and de-
coding and leads to an overall gain in performance (cf. ’Image Scale 320’ vs.
’Baseline’ in Tab. 1). In consequence, our final proposed pipeline includes this
step.

4.2 Joint Tracking and Keypoint Propagation

Inspired by our particular use case of pigeons (cf. Fig. 4), we first track the object
using [50] and then propagate the keypoints on the cropped images (cf. Sec. 4.1).
This is our novel joint tracking and keypoint propagation framework (cf. Fig. 1).
Details are provided in Sec. 1 in the supplementary material. We use this novel
joint tracking and keypoint propagation pipeline only for pose tracking, not VOS.

4.3 Unsupervised Zero-Shot VOS

Encoding a set of j = 1, . . . , n masks M j
i ∈ {0, 1}H×W for unsupervised VOS

is relatively simple [52,23,26,22]. Details on this and our unsupervised mask
initialization can be found in Sec. 1.3 in our supplemental material.
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Fig. 2. Attention heads of the last atten-
tion layer of the CLS token. The input im-
age is the first frame of the bear sequence of
DAVIS2017 [37].

Fig. 3. Ground truth mask (left),
input frame (middle) and predicted
mask (right) for the bear, dog-
agility and drift-straight sequences of
DAVIS2017.

Unsupervised Mask Initialization. Caron et al. [3] found that their unsu-
pervised training method DINO results in a vision transformer with semantically
relevant attention (cf. Fig. 1 in [3]). We use this finding together with the learned
attention layer to perform fully unsupervised object segmentation. Note that so
far, the only human intervention in our tracking pipeline is the initialization
in the first frame. To get rid of it, we generate a mask prediction for the first
frame from the last attention layer of the CLS token. Some of the attention
heads focus on background objects (e.g. Fig. 2 second row, second and fourth
image). Further, we observe that the attention heads seldom focus on the entire
object, and are more likely to select a single feature of the object of interest.
Hence, we employ a heuristic to select attention heads that are important by
computing the median value per attention head and discarding all masks with a
median value below a fixed quantile. The reasoning behind this selection is that
attention focused on the background is spread out more than attention focusing
on a single feature or object. Therefore, the median value is below average.

Next, we follow the steps of Caron et al. [3] to select pixel locations per
attention head.

One disadvantage of the attention is that it is rather coarse. Thus, we improve
the mask quality by performing CRF-based refinement which fits the mask pre-
diction to the input image. These mask refinement steps are similar to the post-
processing steps performed by some other label propagation methods [55,29].

Note that this approach only works for a single object, and can fail for ob-
jects that occupy only a small area of the image. This is due to the nature of our
attention selection mechanism, where we combine multiple attention heads. An-
other caveat is the heuristic-based nature of this approach. Ideally, we would find
a way to perform the attention head selection automatically. Still, the method
shows that the use of attention for mask initialization already gives promising
results as shown in Fig. 3.
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Real-world dataset PCK0.1 PCK0.2

Core pipeline 7.5% 25.1%
Joint pipeline 81.0% 97.5%

Synthetic dataset PCK0.1 PCK0.2

Core pipeline 0.4% 1.0%
Joint pipeline 65.7% 89.1%

Fig. 4. Results for pigeon tracking, showing the last frame of the sequence with the
tracked keypoints. Left image: crop of the real-world sequence. Right image: crop of the
synthetic dataset. Table: comparison of the results for the core pipeline (Sec. 4.1) and
the proposed joint tracking and keypoint propagation pipeline introduced in Sec. 4.2.

5 Experiments

In this section we present ablation studies and discuss results of our applications
and case studies. For more ablation studies, additional qualitative and quanti-
tative results, we refer to Secs. 2-4 respectively in our supplemental material.

5.1 Ablation Studies

Table 1. Ablation study of joint tracking and keypoint propagation on the JHMDB test
set. We measure performance as the percentage of correct keypoints (PCK) [56]. Key-
points are correct if the distance to the corresponding ground truth keypoint relative
to the object size falls within a threshold α. Our implementation of PCK is equivalent
to the one used by UVC [26], using 60% of the bounding box diagonal as the baseline
radius (α = 1.0). PCK is shown at thresholds α = 0.1 and α = 0.2, while ∆α denotes
the absolute difference to the baseline configuration which includes all improvements.

PCK0.1 ∆0.1 PCK0.2 ∆0.2

Baseline 65.8 − 84.2 −
No Feature Normalization 64.0 -1.8 82.5 -1.7
Affinity Top-1 (ArgMax) 59.8 -6.0 80.8 -3.4
Affinity Top-5 65.0 -0.8 83.8 -0.4
No Affinity Normalization 65.3 -0.5 83.9 -0.3
Affinity Softmax-Normalization 65.2 -0.6 83.8 -0.4
Unrestricted Local Affinity 65.6 -0.2 83.9 -0.3
Batched Label Propagation 61.6 -4.2 80.5 -3.7
No Subpixel-Accurate Labels 65.5 -0.3 84.0 -0.2
Image Scale 320 63.2 -2.6 82.1 -2.1

Pose Tracking. For our pose tracking framework, we perform various ab-
lation experiments to ensure that our pose tracking pipeline works as intended,
and analyze the impact of the different components and improvements in the
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Table 2. Ablation study for different types of mask initialization. Performance is mea-
sured as IoU using the first mask of DAVIS2016 as ground truth. Delta shows absolute
difference to the baseline mask initialization.

Ablation mean ∆ median ∆

Baseline 50.8 − 54.7 −
No med. pre-filter 49.1 −1.7 51.7 −3.0
No mask refinement 41.1 −9.7 38.3 −16.4
No med. post-filter 49.9 −0.9 53.9 −0.8

implementation. The baseline configuration of the pipeline is specified in Sec. 4.
The majority of experiments are summarized in Tab. 1. Besides the listed results,
we also experimented with various local affinity sizes. The optimal size for our
configuration is 12. Further, we looked at the influence of the number of similar
locations to aggregate for label propagation (cf. affinity top-k, Sec. 3.2). Here,
we found that increasing or decreasing the baseline value of 20 by 5 corresponds
to a performance loss of roughly 0.2% PCK0.1.

Unsupervised Mask Initialization. The baseline configuration is described
in Sec. 4. All results using unsupervised mask initialization use the ViT b/8
model trained with DINO [3]. We evaluate the performance of the mask ini-
tialization on its own by comparing our mask prediction and the ground truth
mask of frames from the DAVIS2016 [35] dataset. The quality of the mask pre-
diction is computed as the intersection over union (IoU) of the binary masks.
Tab. 2 shows how the performance changes in response to the removal of mask
refinement or one of the median filtering steps. Removal of the mask refinement
step altogether leads to the biggest drop in performance. Intuitively, this makes
sense, as we combine multiple coarse attention masks, thus the refinement can
capture a lot of the details in the image. Mask refinement also requires most of
the initialization time, thus we chose the number of iterations as 10 to strike a
balance between result quality and speed. Going from 1 to 10 iterations improves
the results by 5.2% but increasing the iterations further, up to 50, only gives an
additional 0.5% while requiring significantly more time. For both the quantile
and mass percentage, we found that changes from the baseline in either direction
reduce the performance. Increases as well as decreases by 0.05 reduce the mean
and median performance by values ranging from 0.5% to 6.9%. This trend con-
tinues for larger changes as well. Reducing the spatial resolution or transformer
network size have a major negative impact on the performance. Using ViT b/16
or ViT s/8 decrease the mean IoU by 5.0% and by 11.9% respectively.

5.2 Label Propagation

Pose Tracking. We show that our modifications to the label propagation
pipeline can achieve substantial improvements in tracking accuracy. Quantitative
results on JHMDB [14] are given in Tab. 3 where 15 human keypoints are tracked.
In terms of PCK0.1, we achieve an improvement of 7.2% over UVC [26] and 6.5%
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Table 3. Results for pose tracking on the JHMDB test set. Ours denotes just the
core pipeline, while Ours + tracking includes joint tracking and keypoint propagation
introduced in Sec. 4.2. Values are given in PCK at thresholds 0.1 and 0.2, respectively.

ClrPtr
[48]

SIFTflow
[27]

CycleTime
[52]

mgPFF
[19]

CorrFlow
[23]

UVC
[26]

STC
[13]

Ours Ours
+ trk

Supervised
[54]

PCK0.1 45.2 49.0 57.7 58.4 58.5 58.6 59.3 63.9 65.8 68.7
PCK0.2 69.6 68.6 78.5 78.1 78.8 79.8 84.9 82.8 84.2 92.1

over STC [13], respectively, the latter being the current state-of-the-art at the
time of writing. However, for the less precise PCK0.2, we outperform UVC but
are behind STC. Since we use the exact network weights as UVC, it is possible
that switching to the same feature extraction network as STC might make a
difference here. We leave testing this hypothesis to future work.

Pigeon Keypoint Tracking. We use a newly created dataset with video
material showing a pigeon. Seven keypoints located at the head, shoulders and
tail are annotated. Frames have a resolution of 1080×1920 pixels and the pigeon
occupies a region of roughly 200 × 150 pixels on average. A real-world video of
326 frames and a synthetically generated sequence (for details cf. our supple-
mentary) with 949 frames form the dataset. Figure 4 shows results on these
sequences. Clearly, with our tracking modification (cf. Sec. 4.2) our method can
achieve a similar magnitude of performance as JHMDB whereas the core pipeline
is not capable to handle such a scenario.

Frame 1 Frame 11 Frame 21 Frame 30 Frame 40 Frame 50

Frame 1 Frame 17 Frame 33 Frame 48 Frame 64 Frame 80

Frame 1 Frame 18 Frame 34 Frame 51 Frame 67 Frame 84

Frame 1 Frame 19 Frame 37 Frame 54 Frame 72 Frame 90

Fig. 5. Qualitative results on DAVIS2016val with zero-shot inference. The shown se-
quences are blackswan, bmx-trees, breakdance and dance-twirl, listed from top to bot-
tom. The first frame shows the mask initialization result. The following frames were
sampled over the entire video length maintaining even spacing in between.
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Unsupervised Zero-Shot VOS. Single-object Z-VOS results can be found
in Tabs. 4 and 5 for DAVIS2016 and SegTrackV2 [25] respectively. On DAVIS2016,
only motion segmentation methods (CIS [55] and MoGr [53]) achieve better per-
formance. Motion segmentation has the disadvantage that static, non-moving
objects cannot be segmented, whereas our method can also detect such objects.
Incidentally, DAVIS2016 and SegTrackV2 contains only objects in motion, thus
posing no problem for motion segmentation methods. Further, CIS uses exten-
sive post-processing including an ensemble of models, temporal smoothing, and
refinement with a CRF. Yang et al. [53] argument that a fair comparison should
not use such post-processing, since it reduces real-world use of the methods. If
we consider the results of CIS without the post-processing (Jm = 59.2), our
method surpasses this result by 2.4%. Some other methods also apply post-
processing, as noted in Tab. 4. Additionally, some of the methods listed in the
unsupervised section actually use some supervised components. NLC relies on
supervised boundary detection and MoGr uses supervised optical flow to achieve
the listed results. Compared to MoGr with unsupervised flow, we surpass their
result of Jm = 53.2 [53] by 8.4%. Qualitative single-object Z-VOS results on
DAVIS2016val are in Fig. 5.

Qualitative results of fully unsupervised mask initialization instead are shown
in Fig. 3 and the first column in Fig. 5. We can observe that our method has
difficulties selecting a good mask for objects that appear at a very small scale,
but for larger objects the results look visually good.

Inference Speed. A rigorous evaluation of the inference speed is impossible
without similar implementations and data captured on identical hardware. This
is out of scope for our work, but we give a rough expected performance in the
supplemental material.

6 Conclusions

In this work, we perfom a careful study of the state-of-the-art in correspondence-
based label propagation methods and present a pipeline composed of the best
practices and with improvements in various implementation details. For pose
tracking, the proposed pipeline outperforms previous state of the art in terms of
PCK0.1 on the JHMDB dataset by at least 6.5%, more precisely, 59.3% in [13]
vs. 65.8% for our method. In addition, we propose a joint tracking and keypoint
propagation framework which allows to accurately propagate keypoints in our
new dataset for tracking of pigeons, which is not possible with the standard
pipeline. Finally, for video object segmentation, we extend our pipeline to a truly
unsupervised one by initializing the first frame with the self-attention layer from
DINO that is trained with no supervision. Our method is online and can compete
with state of the art pipelines. Note that while [53] achieves a higher score among
the unsupervised pipelines, their framework (and others) is based on optical flow
and does not work for static objects. Furthermore, while [55] can achieve a higher
score with their post-processing framework, it is computationally intensive and
could be applied to any of the methods.
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Table 4. Results for VOS on zero-shot DAVIS2016val. Supervision refers to the the
use of human annotations during training. Methods are considered unsupervised if no
training is performed or no human annotations are used. Weak supervision refers to the
use of human annotations without pixel-precision, e.g. bounding boxes or class labels. A
method is considered online, if it processes videos as a stream of frames instead of using
them all at once. The results have to be produced immediately, before the next frame
is used. Post-processing refers to refinement steps after the actual segmentation, such
as temporal smoothing or averaging of an ensemble of evaluation runs. Such techniques
could be applied to other methods as well and they typically operate offline. ”Motion
only” marks methods that perform motion segmentation. These methods only work
for moving objects, which limits their applicability. The results for methods other than
our own are collected from the official DAVIS2016 results page [36] and the respective
papers. For CIS [55], AMD [28] and 3DC-Seg [31], some measures were not reported,
hence they are missing in the table.
∗: Results are available with a few frames delay.

Method Online Post-processing Motion only J&Fm Jm Jr Fm Fr

Unsupervised
MGR [34] × × ✓ 44.0 48.9 44.7 39.1 28.6
KEY [24] × ✓ × 46.3 49.8 59.1 42.7 37.5
MSG [32] × × × 52.1 53.3 61.6 50.8 60.0
NLC [7] × ✓ ✓ 53.7 55.1 55.8 52.3 51.9
FST [33] × ✓ × 53.5 55.8 64.9 51.1 51.6
MuG [29] × ✓ × 54.8 58.0 65.3 51.5 53.2
AMD [28] ✓ × ✓ − 57.8 − − −
CIS [55] ✓ × ✓ − 59.2 − − −
Ours ✓ × × 59.8 61.6 71.3 58.0 63.3
MoGr [53] ✓ × ✓ 64.7 68.3 79.5 61.1 72.1
CIS + pp [55] × ✓ ✓ − 71.5 − − −

Weakly supervised
COSEG [45] × ✓ × 51.1 52.8 50.0 49.3 52.7
MuG [29] × ✓ × 58.7 61.2 74.5 56.1 62.1

Fully supervised
FSEG [5] ✓ × × 68.0 70.7 83.5 65.3 73.8
ARP [17] × × × 73.4 76.2 91.1 70.6 83.5
MATNet [58] ✓ ✓ × 81.6 82.4 94.5 80.7 90.2
3DC-Seg [31] ✓∗ × × 84.5 84.3 − 84.7 −

Table 5. Z-VOS results on SegTrackV2. The Z-VOS inference treats the dataset as a
single-object dataset, i.e. all individual object masks are merged into one object.
†: These methods use either offline post-processing or rely on some component with
supervised training.

MoGr[53] CIS[55] FST[33] AMD[28] SAGE[9] Ours MoGr† CIS+pp† NLC†[7]

Jm 37.8 45.6 47.8 57.0 57.6 58.4 58.6 62.0 67.2
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