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Abstract. Most tracking data encompasses humans, the availability of
annotated tracking data for animals is limited, especially for multiple
objects. To overcome this obstacle, we present I-MuPPET, a system to
estimate and track 2D keypoints of multiple pigeons at interactive speed.
We train a Keypoint R-CNN on single pigeons in a fully supervised man-
ner and infer keypoints and bounding boxes of multiple pigeons with that
neural network. We use a state of the art tracker to track the individual
pigeons in video sequences. I-MuPPET is tested quantitatively on single
pigeon motion capture data, and we achieve comparable accuracy to state
of the art 2D animal pose estimation methods in terms of Root Mean
Square Error (RMSE). Additionally, we test I-MuPPET to estimate and
track poses of multiple pigeons in video sequences with up to four pigeons
and obtain stable and accurate results with up to 17 fps. To establish a
baseline for future research, we perform a detailed quantitative tracking
evaluation, which yields encouraging results.

Keywords: Pose Estimation · Multi-Object Tracking · Animals · Ap-
plications.
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Fig. 1. Interactive Multi-Pigeon Pose Estimation and Tracking (I-MuPPET). Left :
Estimated complex pose (beak tip, nose, left and right eye, left and right shoulder and
tail) of a pigeon with its ID from tracking. Left body side of pigeon in red, right one
in blue and beak in orange. Right : Facility with cameras and Vicon motion capture
system where our pigeon datasets were recorded. © CASCB Uni Konstanz.

1 Introduction

Accurate quantification of behavior is critical to understand the underlying prin-
ciples of social interaction and the neural and cognitive underpinnings of animal
behaviour [7,1,5,38,31]. While researchers conventionally analyzed animal be-
haviour manually using a predefined catalogue of behaviours called ethograms,
the recent advances in computer vision, as well as the increasing demands for
a large data set involving the analysis on the fine-scaled and rapidly-changing
behaviours of animals, encourage automated tracking methods [12,18,2,38]. The
CVPR workshop in 2021 on “Computer Vision for Animal Behavior Tracking
and Modeling” [43] emphasized the increasing interest in computer vision tools
in the field of animal behaviour. While existing automatic methods range from
object detection [16], behavior analysis [10,42], segmentation [11], 3D shape and
pose fitting [9,3] to pose estimation [33,19] and tracking [45,49], reliable track-
ing of multiple moving animals in real-time and estimating their pose remains a
challenging task.

One of the limiting factors in the field of animal pose estimation is the small
amount of annotated training data compared to its human counterpart (for
example 3.6 million in [25]). DeepLabCut [38], LEAP [46] and DeepPoseKit [20]
overcome this lack of training data by introducing a method to manually label
few data that is then used to train a neural network. With that network the
authors predict body parts of additional unlabeled material creating more and
more annotated training data for animals. Creatures Great and SMAL [9] instead
creates synthetic silhouettes for training and extracts silhouettes [52,53] from real
data for inference. We are aware of only three data sets for birds [3,54,50]. Clearly,
methods need to be developed that exploit few training data in an efficient way.

In this paper, we present I-MuPPET, an interactive multi-pigeon pose esti-
mation and tracking system. We can acquire training data for a single pigeon in
a semi-automated way and demonstrate that training on an annotated dataset
containing only a single pigeon is sufficient for our framework to predict seven
keypoints of a complex pose for multiple pigeons and track the individuals at in-
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teractive speed (> 1 fps). We track up to four pigeons (at the moment the upper
limit in our dataset) with 12 − 17 fps, and report detailed results for speed and
accuracy. Our framework is comparable with state of the art 2D animal pose
estimation methods in terms of Root Mean Square Error (RMSE) .

2 Related Work

2.1 Animal Pose Estimation

2D Single Animal Pose Estimation. With the huge success of DeepLabCut
[38] and LEAP [46], animal pose estimation has been developing into its own re-
search branch parallel to human pose estimation. DeepLabCut and LEAP both
introduce a method for labelling animal body parts and training a deep neural
network for predicting 2D body part positions. DeepPoseKit [20] improved the
inference speed by a factor of approximately two, while maintaining the accu-
racy of DeepLabCut. In 3D Bird Reconstruction [3], they predict 2D keypoints
to estimate the pose and shape of cowbirds from a single view. Since manual
annotations are time-consuming, labor-intensive, and prone to errors, we use a
framework that uses semi-automatically labeled data.

2D Multi-Animal Pose Estimation. DeepLabCut is extended in [34] to
predict 2D body parts of multiple animals. This extension uses training data
with annotations of multiple animals. The authors will release four datasets
with annotations containing mice, pups, marmosets and fish. Similarly SLEAP
[47] provides several architectures to estimate 2D body parts of multiple ani-
mals. These two approaches [34,47] work well but are trained on multi-animal
annotated data. Since this kind of data is limited in its availability, we overcome
this limitation by training a framework on annotated single animal data and still
predict complex poses of multi-animal video sequences at interactive speed.

3D Animal Pose Estimation. In [15] Dunn et al. use a 3D CNN similar
to [26] to infer 3D poses of single rodents from multi-view. This approach comes
at the cost of longer run times. In [21,40,28,4,30] the authors use a 2D pose
estimator (e.g. [41,38]) to predict 2D keypoints that they then triangulate to
3D. We notice that all these 3D frameworks exploit 2D keypoints, and can thus
also use our method as a base.

2.2 Animal Tracking

Romero-Ferrero et al. in [49] and Heras et al. in [24] use the software idtracker.ai
[17] to track up to 100 zebrafish at once. The software needs to know the number
of individuals beforehand since it performs an individual identification in each
frame. Idtracker.ai does not predict keypoints of the individuals, whereas TRex
[51] estimates 2D head and rear of bilateral animals while tracking up to 256
individuals in real-time using background subtraction.

2D Animal Pose Estimation and Tracking. DeepLabCut [38] is further
extended in [34] to track multiple mice, pups, marmosets and fish. The authors
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split the workflow in local and global animal tracking. For local animal tracking
they build on SORT [8], a simple online tracking approach. For animals that
are closely interacting or in case of occlusions they introduce a global tracking
method by optimizing the local tracklets with a global minimization problem
using multiple cost functions on the basis of the animals’ shape or motion for
example. In contrast to this work, we focus on online tracking thus using only
SORT [8]. In principal our method can also be post-processed to optimize the
local tracklets obtained from SORT [8].

SLEAP [47] uses a tracker based on Kalman filter or flow shift inspired by [55]
for candidate generation to track multiple individuals. As mentioned beforehand
they also do 2D multi-animal pose estimation.

3 Technical Framework

We will explain the data acquisition of our pigeon data, introduce briefly the two
datasets with which we train I-MuPPET in order to compare our framework to
[38] and [3] (cf. Secs. 4.2 and 4.3), describe the technical framework behind
I-MuPPET and discuss several ablation studies.

3.1 Datasets

Data Acquisition. Our pigeon data is recorded with a Vicon motion capture
system. The system consists of six Vue 2, four Vantage 5 and 26 Vero 2.2 sen-
sors covering a volume of approximately 15 × 7 × 4 meters, see Fig. 1 and the
supplemental material. Two Vue cameras were used to record the RGB video
sequences of single pigeons, while the 30 infrared sensors captured the positions
of the pigeons within an area of approximately 5 × 5 meters.

Single Pigeon Data. In total we have 27730 annotated RGB frames (13532
frames from one camera view, 14198 from the other) with a resolution of 1920×
1080 × 3 pixels available on which only one single pigeon is present (cf. Fig. 2,
first row). The annotated frames contain the 2D positions of seven distinct body
landmarks (beak tip, nose, left and right eye, left and right shoulder and tail,
cf. Fig. 1) plus the coordinates of a bounding box containing the object. These
annotations are obtained in a semi-automatic manner (cf. [39]). For more details
regarding our data see our supplemental material.

Multi-Pigeon Data. In addition, we have RGB video sequences of multi-
ple pigeons available (cf. Fig. 2, second row). At the moment we do not have
ground truth annotations for individual keypoints of the multi-pigeon video se-
quences. We do have bounding boxes for the multi-pigeon sequences that we use
as ground truth for a quantitative tracking evaluation (cf. Sec. 4.4). To obtain
these bounding boxes we perform a simple background subtraction and validate
the bounding boxes with the 3D Vicon positions of the pigeons projected into
the camera images.

Data set (upon request) along with accompanying source code to reproduce
the results of this paper are publicly available at https://urs-waldmann.github.
io/i-muppet/.

https://urs-waldmann.github.io/i-muppet/
https://urs-waldmann.github.io/i-muppet/
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Fig. 2. Pigeon Data. Sample frames of our data set. First row shows images from our
annotated single pigeon data set. Second row from our multi-pigeon data. Best viewed
in color version online.

Odor Trail Tracking Data. This data from [38] contains single mice fol-
lowing an odor and contains 1080 manually annotated samples. The samples are
random, distinct frames from multiple sessions observing seven different mice
[38] and the resolution of the images is 640 × 480 or 800 × 800 since the data
were recorded with two different monochromatic cameras.

Cowbird Data. This data from [3] contains single cowbirds. Their original
images have a maximum resolution of 1920×1200 containing multiple birds. For
2D pose estimation they use 1000 cropped samples of single individuals from a
subset of 18 moments across six of the 10 days [3] with a resolution of 256×256.

For more details on these two datasets we refer to [38,3]. We use them to
train I-MuPPET in order to compare the accuracy in pose estimation to that of
[38] and [3].

3.2 Pose Estimation and Tracking

The core components of our framework are a Keypoint R-CNN [22] and the
SORT tracker [8], see Fig. 3.

The Keypoint R-CNN is a PyTorch [44] implementation of a Mask R-CNN
[22], which is modified to output seven keypoints (beak tip, nose, left and right
eye, left and right shoulder and tail) for each detected instance, in addition
to a score, label (background vs. object) and bounding box. Like DeepLabCut

Fig. 3. I-MuPPET. For inference the input image (here one pigeon cropped for better
view) is passed to the Keypoint R-CNN [22] that predicts bounding boxes and poses of
all instances. The bounding boxes are passed to SORT [8] that returns bounding box
updates with their associated ID.
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[38], our network has a ResNet-50-FPN [23,36] backbone that was pretrained
on ImageNet [14], similar to [22]. For details, we refer to [22]. The input to the
network are RGB images (cf. Fig. 3) normalized to mean and standard deviation
of 0.5. The network is trained in a fully supervised manner using stochastic
gradient descent with learning rate decay, momentum and weight decay. For
training, the network expects ground truth labels, bounding boxes and keypoints
in addition to the normalized RGB images.

We also implement data augmentation for training in order to avoid overfit-
ting and to mimic other conditions than those present in the single pigeon data.
This expands the training set, which turns out to also lead to better results
in multi-pigeon pose estimation when trained on data with only single pigeons
present. Specifically, our input data has a specific probability to be flipped, scaled
within a specified range, and changed in brightness or sharpness.

The SORT tracker [8] accepts the bounding boxes from all pigeon instances in
every frame that exceed a given score threshold and outputs updated bounding
boxes with their associated ID using a combination of Kalman Filter [29] and
Hungarian algorithm [32]. We chose this method since we are primarily interested
in online tracking and high inference speed, and SORT [8] can run up to 260 fps.
We use standard parameters and refer to [8] for details.

3.3 Network Training and Ablation Studies

Data Augmentation for Pigeons. For data augmentation we find that chang-
ing brightness, flipping or scaling do not enhance performance, but changing
sharpness with a probability of 0.2 results in the best performance (for numbers
cf. supplemental material). This is intuitive since we train and test on the sin-
gle pigeon data (cf. Fig. 2, first row) where the training data already contains a
wide range of different pigeon positions and lightning conditions, and thus covers
most of the scaling and brightness. Also the training data already include most
body orientations (with respect to the camera), thus flipping does not improve
test accuracy. Since the depth of field of the cameras is limited the pigeons are
sometimes slightly out of focus and therefore blurring the input image with a
small probability of 0.2 improves the accuracy of the test set.

In case of multi-pigeon video sequences, however, we find that the best data
augmentation parameters are not the same as for the single pigeon data set.
We keep the parameters from the single pigeon analysis but find that randomly
jittering brightness by a factor chosen uniformly from [0.4, 1.6] and a flipping
probability of 0.5 is best. This is intuitive because the single pigeon data (cf.
Fig. 2, first row) does not cover the range of brightness found in the multi-
pigeon data (cf. Fig. 2, second row) plus the flipping makes the pose estimation
in new situations more robust. A small scaling range of ±5% is sufficient since
the single pigeon data covers already a large range of pigeon sizes. Also, if the
scaling range is too large, we find multiple (mis-)detections if pigeons are nearby.
This is also the case in situations where the pigeons occlude or are close to each
other even if we do not apply scaling.
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Data Augmentation for Cowbirds. The cowbird data set is recorded in
outdoor aviaries [3]. Thus different day light and season conditions are present.
To consider these different conditions inherent in the data, we use different data
augmentation parameters. We find that randomly changing brightness by a fac-
tor chosen uniformly from [0.7, 1.3], and a sharpness probability of 0.1, works
best (for numbers cf. supplemental material).

Training Hyperparameters. To find out the best network configuration
for I-MuPPET we perform several experiments (see supplemental material).
From this analysis we find that using a learning rate of 0.005 and reducing
it by γ = 0.5 every given step size to reach a final learning rate of 0.0003 at the
end of training works best.

4 Evaluation

We quantitatively evaluate I-MuPPET on our annotated single pigeon data
(RMSE in Sec. 4.2, PCK in Sec. 4.3). In addition we evaluate our framework
on the odor trail tracking data set from [38] and the cowbird data set from [3].
In this way we can compare the performance of I-MuPPET to the 2D pose es-
timators used in [38,3]. We also evaluate the I-MuPPET tracking performance
in terms of accuracy, precision and speed on a workstation with an nVidia Ti-
tan RTX, 64 GB DDR4 RAM, an Intel Xeon E5-2620 at 2.10GHz and a 2TB
Samsung SSD 850.

4.1 Metrics

Pose Estimation. Two widely used metrics, also in human pose estimation, are
the Root Mean Square Error (RMSE), in human pose estimation better known
as Mean Per Joint Position Error (MPJPE, cf. e.g. [26]), and the Percentage of
Correct Keypoints (PCK, cf. e.g. [56]). DeepLabCut [38] uses the former, 3D
Bird Reconstruction [3] the latter. Note that PCK properly takes into account
scale, and thus this accuracy measure is more meaningful than RMSE. Both
metrics assume that all keypoints in all frames can be predicted.

Tracking. There are three sets of tracking performance measures that are
widely used in the literature [13]: the CLEAR-MOT metrics introduced in [6],
the metrics introduced in [35] to measure track quality, and the trajectory-based
metrics proposed in [48]. Additionally, we report the new Higher Order Tracking
Accuracy (HOTA). It was introduced in [37] because the other metrics overem-
phasize the importance of either detection or association. HOTA measures how
well the trajectories of matching detections align, and averages this over all
matching detections, while also penalising detections that do not match [37].

For further details we refer to [13,37]. We use [27] for evaluation.

4.2 Comparison with DeepLabCut

DeepLabCut [38] is state of the art for 2D animal pose estimation. In the article
the authors evaluate and report numbers in terms of RMSE on their odor trail
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Table 1. Comparison with DeepLabCut (DLC). RMSE on the odor trail tracking test
set from [38]. Values for DLC from [38]. We report precision within ±0.2 because we
have to read values from Fig. 2c in [38].

Model, iterations RMSE [px]

I-MuPPET, 200K iterations 4.2
DLC, 200K iterations 3.6± 0.2
DLC, 350K/600K iterations 3.2± 0.2

tracking data where they estimate the pose (snout, left and right ear and tail
base) of single mice. That is why we also report RMSE only in this section. The
networks are trained a total of 650K iterations with batch size 1 for three splits
of 0.8/0.2 (training/test) and evaluated every 50K iterations. The authors also
report the average of the three splits. For more details see [38].

In order to compare I-MuPPET to DeepLabCut, we train their odor trail
tracking data set with our framework. In addition we randomly sample 1000
frames from our full single pigeon data set. This sub data set represents our
four sessions in the same way as our full single pigeon data set. We train our
framework on the DeepLabCut and our sub-sampled single pigeon data with
the configuration that we report in Sec. 3.3. We train for 250 epochs with a
batch size of 20 instead of 1 to exploit our hardware and fine-tune twice for
another 250 epochs with training configurations that lower the learning rate
further to compare our results to those of DeepLabCut after 200K, 400K and
600K iterations.

Tab. 1 compares results for DeepLabCut from [38] with our framework. We
obtained the results for DeepLabCut from Fig. 2c in [38]. These results were
achieved with a network based on ResNet-50. We report their values for 200K
iterations and their absolute lowest RMSE on test set averaged over the three
0.8/0.2 splits. For our framework we report numbers with the same precision as
we are able to read for DeepLabCut. We report numbers for 200K iterations only
because our network does not improve the accuracy of pose estimation in the test
set when trained for more iterations: 4.2 px@200K (cf. Tab. 1) on the odor trail
tracking test set from DeepLabCut averaged over the three splits, 3.2 px@200K
on our sub-sampled single pigeon test set averaged over the three splits.

I-MuPPET is comparable with DeepLabCut in terms of RMSE meaning that
we also achieve a RMSE of about 4 px on the odor trail tracking test set. In
addition, we achieve a RMSE of about 3 px for our sub-sampled single pigeon
data set, both after 200K training iterations. Overall, this comparison shows
that I-MuPPET achieves performance on par with state-of-the-art.

4.3 Comparison with 3D Bird Reconstruction

3D Bird Reconstruction [3] is state of the art for 3D bird shape recovery, and
they also report on accuracy on 2D bird pose estimation. The authors evaluate
and report numbers in terms of PCK (cf. Sec. 4.1) on their cowbird data, where
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Table 2. Comparison with 3D Bird Reconstruction (3DBR). PCK on the cowbird test
set from [3]. Values for 3DBR from [3].

Model, epochs @0.05 @0.1

I-MuPPET, 45 epochs 0.39 0.56
I-MuPPET, 60 epochs 0.36 0.54
3DBR, 60 epochs 0.46 0.64

they estimate the pose (bill tip, right and left eyes, neck, nape, right and left
wrists, right and left wing tips, right and left feet and the tail tip) of single
cowbirds. Their network is trained for 60 epochs (private e-mail communication
with the authors) with a train/test split of 0.75/0.25. For more details see [3].

In order to compare I-MuPPET to 3D Bird Reconstruction, we train their
single cowbird data with our framework. In addition we take the same single
pigeon sub data set containing 1000 frames (cf. Sec. 4.2) to report PCK on our
pigeon data. We remind the reader that PCK properly takes into account scale,
and thus this accuracy measure is more meaningful than RMSE (cf. Sec. 4.1)
reported in Sec. 4.2. We train our framework (cf. Sec. 3.2) on the cowbird and
our sub-sampled pigeon data with the configuration that we report in Sec. 3.3.
We train for 60 epochs with a batch size of 20 to compare our results to those
of 3D Bird Reconstruction. Our framework achieves best performance on the
cowbird data after 45 epochs, which is why we report PCK for these as well.

Tab. 2 compares results for 3D Bird Reconstruction from [3] with our frame-
work. While I-MuPPET achieves lower accuracy by 7% (PCK@0.05) and 8%
(PCK@0.1) on the cowbird data set than 3D Bird reconstruction, I-MuPPET
converges faster (45 epochs vs. 60 epochs). In addition, we achieve a PCK of
0.94@0.05 and 0.97@0.1 for our sub-sampled single pigeon data set after 60
training epochs.

Table 3. Combined Quantitative Tracking Evaluation. We test 24 video sequences
quantitatively with the metrics specified in Sec. 4.1. Here we report the combined
results for different detection confidence scores of the Keypoint R-CNN (cf. Sec. 3.2).
The space is unfortunately not sufficient to explain all abbreviations and metrics in
detail, please refer to our supplemental material.

conf. score HOTA↑ MOTA↑ MOTP↑ Rcll↑ Prcn↑ MT↑ ML↓ FPF↓ IDS↓ Frag↓ IDF1↑

0 0.53 0.48 0.61 0.83 0.70 0.64 0.01 0.99 24 292 0.75
0.5 0.57 0.65 0.61 0.83 0.83 0.64 0.01 0.49 8 278 0.82
0.75 0.57 0.67 0.61 0.83 0.84 0.64 0.01 0.44 11 280 0.83
0.9 0.56 0.68 0.61 0.82 0.85 0.64 0.01 0.39 14 277 0.83
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Fig. 4. Qualitative Results of I-MuPPET. Cropped sample frames of our pipeline. Left
body side of pigeon in red, right one in blue and beak in orange. First and second, third
and fourth row are from video sequences with one, two, three and four pigeons present
respectively. Sometimes not all pigeons are present in cropped frame for a better view.

4.4 I-MuPPET Tracking Performance

The availability of annotated data from animals is limited, especially for mul-
tiple individuals. To overcome this obstacle, we train our Keypoint R-CNN (cf.
Sec. 3.2) on our single pigeon data (cf. Sec. 3.1) and infer 2D keypoints on
multi-pigeon video sequences. In addition we track the individuals with SORT
(cf. Sec. 3.2). We do so for up to four pigeons present in the videos. The video
sequence with one pigeon present is not from our labeled single pigeon data set.

Fig. 4 shows results of the 2D pose estimation and tracking task for multiple
pigeons. The 2D keypoint locations show a very good accuracy even though I-
MuPPET was trained on single pigeon data only. The individuals are tracked
correctly. See also our supplementary video sequences.

Quantitative Tracking Evaluation. We test I-MuPPET quantitatively
on 24 video sequences recorded with 50 fps. They contain between one and four
pigeons and 7872 frames and 70 objects in total. For evaluation we use the
metrics specified in Sec. 4.1. In Tab. 3 we report the combined results of the 24
video sequences for different detection confidence scores. We see that tracking
does not improve much when setting the detection score from 0.5 to 0.75. We
get the best tracking results for a confidence score of 0.9. Detailed results for
this detection confidence score of 0.9 are shown in Tab. 4. We achieve an overall
good result with I-MuPPET on the video sequences (HOTA: 0.56, MOTA: 0.68,
MOTP: 0.61, Recall: 0.82, Precision: 0.85 and IDF1: 0.83).

By far the worst sequence with respect to tracking accuracy is 4 pigeons 8.
In this sequence the four pigeons walk towards the edge of the facility that in the
camera view appears darker than it does otherwise. In cases of high fragments
(frag), e.g. sequences 2 pigeons 3 and 4 pigeons 9, the video sequences show the
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Table 4. Detailed Quantitative Tracking Evaluation. We test 24 video sequences quan-
titatively with the metrics specified in Sec. 4.1. The threshold for the confidence score
of the Keypoint R-CNN (cf. Sec. 3.2) is set to 0.9.

Video seq. HOTA↑ MOTA↑ MOTP↑ Rcll↑ Prcn↑ MT↑ ML↓ FPF↓ IDS↓ Frag↓ IDF1↑

1 pigeon 1 0.64 1 0.65 1 1 1 0 0 0 0 1
1 pigeon 2 0.58 0.89 0.62 0.94 0.94 1 0 0.06 0 2 0.94
1 pigeon 3 0.57 0.96 0.59 0.98 0.98 1 0 0.02 0 7 0.98

2 pigeons 1 0.53 0.57 0.56 0.78 0.78 0.50 0 0.43 0 1 0.78
2 pigeons 2 0.56 0.99 0.57 0.99 0.99 1 0 0.01 0 2 0.99
2 pigeons 3 0.57 0.76 0.58 0.88 0.88 0.50 0 0.24 0 30 0.88
2 pigeons 4 0.60 0.94 0.60 0.97 0.97 1 0 0.06 0 2 0.97
2 pigeons 5 0.65 0.99 0.66 0.99 1 1 0 0 1 1 0.99
2 pigeons 6 0.69 1 0.69 1 1 1 0 0 0 0 1

3 pigeons 1 0.57 0.50 0.60 0.75 0.75 0.67 0 0.74 0 27 0.75
3 pigeons 2 0.57 0.81 0.59 0.90 0.91 0.67 0 0.28 0 11 0.91
3 pigeons 3 0.59 0.91 0.60 0.96 0.96 1 0 0.13 0 7 0.96
3 pigeons 4 0.64 0.73 0.66 0.87 0.87 0.67 0 0.40 0 17 0.87
3 pigeons 5 0.62 0.82 0.64 0.91 0.91 0.67 0 0.27 0 7 0.91

4 pigeons 1 0.47 0.49 0.56 0.73 0.75 0.50 0 0.95 2 23 0.72
4 pigeons 2 0.46 0.32 0.55 0.60 0.68 0.25 0 1.14 2 19 0.64
4 pigeons 3 0.48 0.75 0.57 0.84 0.90 0.75 0 0.36 3 16 0.82
4 pigeons 4 0.59 0.62 0.65 0.80 0.82 0.75 0 0.73 1 6 0.80
4 pigeons 5 0.63 1 0.64 1 1 1 0 0 0 0 1
4 pigeons 6 0.54 0.77 0.60 0.85 0.91 0.50 0 0.33 0 5 0.88
4 pigeons 7 0.55 0.53 0.63 0.76 0.76 0.50 0 0.93 1 12 0.76
4 pigeons 8 0.29 −0.09 0.55 0.26 0.42 0 0 1.38 1 25 0.29
4 pigeons 9 0.50 0.47 0.59 0.73 0.74 0.25 0 1 1 52 0.71
4 pigeons 10 0.46 0.44 0.58 0.69 0.74 0.75 0.25 0.97 2 5 0.63

Combined 0.56 0.68 0.61 0.82 0.85 0.64 0.01 0.39 14 277 0.83

same darker regions. Please note that this can be solved by simply setting the
SORT [8] parameter to keep alive a track without associated detections to a value
higher than 1. We leave it at 1 since we are interested in online tracking and not
in re-identification. Thus early deletion of lost targets improves efficiency.

Inference Speed. We also benchmark the inference speed of I-MuPPET (cf.
Sec. 3.2) with the four videos from our supplemental material. The benchmark
includes the complete pipeline except for loading the model. It includes also I/O
times reading the images from our AVI video sequences (encoded with libx264).
We loop three times over the full video sequence, repeat this procedure three
times and calculate the average. We obtain an interactive speed of about 12−13
fps (cf. Tab. 5) for our full pipeline. Interestingly, speed is almost independent
from the number of pigeons present in the video.

We also benchmark the scenario where we preload the video sequence in
memory and are thus independent of disk I/O, with otherwise the same proce-
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Table 5. I-MuPPET Inference Speed. Benchmark for our complete pipeline. We process
our pipeline frame by frame which also includes I/O times reading the images from our
AVI video sequences. Values for different number of pigeons differ by 1 fps at most.

1 pigeon 2 pigeons 3 pigeons 4 pigeons

frame rate [fps] 13.1 13.0 12.5 12.1

dure, see Tab. 6 for results. We report values for batch sizes up to 32, after which
we do not observe any speed-up. The speed of our pipeline increases for a batch
size of 1 by about 1 fps (comparing Tab. 5 with Tab. 6) if we preload the video
to memory. The maximum speed is at batch size 16 and 32 with an interactive
speed of about 16 − 17 fps depending on the number of pigeons present in the
video sequence.

There are two frameworks which also perform 2D keypoint prediction of
complex poses and tracking: maDLC [34] and SLEAP [47]. maDLC [34] does
not report numbers on inference speed. SLEAP [47] instead reports numbers and
also compares to a SLEAP version of a DLC ResNet model for multi-instance
pose estimation. Their benchmark procedure and hardware is comparable to
ours. For details we refer to [47]. A rough comparison yields that I-MuPPET is
comparable in inference speed with the DLC ResNet version of SLEAP. SLEAP
[47] instead is about an order of magnitude faster than our framework (numbers
read off from [47], Figs. 2b, 3e and Extended Data Fig. 6c; considering the fact
that the pigeon image resolution is higher than the one of the flies and mice
(open field) and thus we process more data through the whole pipeline). While
I-MuPPET solves the substantially harder task of a ‘generalist’ approach of
training a single model that works on all datasets, SLEAP uses a ‘specialist’
paradigm where small, lightweight models have just enough representational
capacity to generalize to the low variability typically found in scientific data
[47]. The approach of I-MuPPET comes with an additional cost of compute
resource requirements. Albeit with I-MuPPET we want to offer a framework
that works with both low and high variability data at the same time, depending

Table 6. I-MuPPET Inference Speed. Benchmark for our in-memory pipeline. We
benchmark our pipeline with our AVI video sequences preloaded in memory and report
values for different batch sizes.

batch frame rate [fps]
size

1
2
4
8
16
32

1 pigeon 2 pigeons 3 pigeons 4 pigeons

14.5 14.1 13.8 13.5
15.2 14.4 14.6 14.4
15.6 15.3 14.9 14.8
16.1 15.5 15.5 15.0
17.1 16.8 16.3 16.1
17.4 16.9 16.2 15.9
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Fig. 5. Limitations. Cropped frames of failure cases. See Fig. 1 for an explanation of
colors and labels.

on the application, one can easily change the pose estimator of I-MuPPET to
achieve frame rates comparable to SLEAP.

4.5 Limitations and Future Work

From Fig. 5 we see that in some frames of the multi-pigeon video sequences,
pose estimation is not accurate. In addition the bounding box detector fails
in cases where pigeons are too close together, or occlude each other, since we
trained it only on single pigeon data. This also affects the pose estimation in this
case. Both of these situations can probably be improved by exploiting labeled
multi-instance data. Since availability is limited one approach is to synthetically
exploit the single instance data. There currently are no instances of occlusions
in our multi-pigeon video sequences, we intend to create more varied datasets to
assess performance in more complex scenarios.

5 Conclusion

In this work we present I-MuPPET, an interactive multi-pigeon pose estima-
tion and tracking system. While training a neural network only on single pigeon
training data, we demonstrate that we can still predict keypoints of a complex
pose (seven distinct keypoints) for multiple pigeons and track the individuals
at interactive speed of 12.1 − 17.4 fps. I-MuPPET has also a comparable accu-
racy with DeepLabCut [38] in terms of RMSE with respect to the estimation of
2D animal keypoints. Furthermore we perform a quantitative tracking evalua-
tion on 24 video sequences and obtain good results (HOTA: 0.56, MOTA: 0.68,
MOTP: 0.61, Recall: 0.82, Precision: 0.85 and IDF1: 0.83). We hope that this
work inspires researchers to improve upon our baseline and pose estimation and
tracking of multiple animals in general. As discussed above, we have strived to
give a fair comparison, but due to the limitations in the reported data and the
different domains of the methods, this comparison can not be fully rigorous.
However, it gives, in our opinion, sufficient information to indicate the com-
petitive performance of the proposed framework. Nevertheless, our future work
will additionally focus on more datasets for a more comprehensive quantitative
performance comparison of animal pose estimation and tracking across different
species, which we believe is necessary to make further systematic progress.
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Solié, C., Reymond, G., Pifferi, F., Aujard, F., Herrel, A., Huber, D.: Etholoop:
automated closed-loop neuroethology in naturalistic environments. Nat. Methods
17, 1052–1059 (2020)

43. Park, H.S., Rhodin, H., Kanazawa, A., Neverova, N., Nobuhara, S., Black, M.:
Cv4animals: Computer vision for animal behavior tracking and modeling (2021),
https://www.cv4animals.com/

44. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS
(2019)

45. Pedersen, M., Haurum, J.B., Bengtson, S.H., Moeslund, T.B.: 3d-zef: A 3d ze-
brafish tracking benchmark dataset. In: CVPR (2020)

46. Pereira, T.D., Aldarondo, D.E., Willmore, L., Kislin, M., Wang, S.S.H., Murthy,
M., Shaevitz, J.W.: Fast animal pose estimation using deep neural networks. Nat.
Methods 16, 117–125 (2019)

47. Pereira, T.D., Tabris, N., Matsliah, A., Turner, D.M., Li, J., Ravindranath, S.,
Papadoyannis, E.S., Normand, E., Deutsch, D.S., Wang, Z.Y., McKenzie-Smith,
G.C., Mitelut, C.C., Castro, M.D., D’Uva, J., Kislin, M., Sanes, D.H., Kocher, S.D.,
Wang, S.S.H., Falkner, A.L., Shaevitz, J.W., Murthy, M.: Sleap: A deep learning
system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022)

48. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures
and a data set for multi-target, multi-camera tracking. In: ECCV. pp. 17–35 (2016)

https://www.cv4animals.com/


I-MuPPET: Interactive Multi-Pigeon Pose Estimation and Tracking 17

49. Romero-Ferrero, F., Bergomi, M.G., Hinz, R.C., Heras, F.J.H., de Polavieja, G.G.:
idtracker.ai: tracking all individuals in small or large collectives of unmarked ani-
mals. Nat. Methods 16, 179–182 (2019)

50. Van Horn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeirotis, P., Perona,
P., Belongie, S.: Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In: CVPR (2015)

51. Walter, T., Couzin, I.D.: Trex, a fast multi-animal tracking system with markerless
identification, and 2d estimation of posture and visual fields. eLife 10, e64000
(2021)

52. Wang, J., Yuille, A.L.: Semantic part segmentation using compositional model
combining shape and appearance. In: CVPR (2015)

53. Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., Yuille, A.L.: Joint object and
part segmentation using deep learned potentials. In: ICCV (2015)

54. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona,
P.: Caltech-UCSD Birds 200. Tech. Rep. CNS-TR-2010-001, California Institute of
Technology (2010)

55. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: ECCV (2018)

56. Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of
parts. IEEE TPAMI 35(12), 2878–2890 (2013)


	I-MuPPET: Interactive Multi-Pigeon Pose Estimation and Tracking

